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In this paper we discuss the existence of generic long-range correlations in 
spatially homogeneous and stable equilibrium states ofclosed lattice gas automata 
whose stochastic collision rules violate the symmetry conditions of detailed 
balance and in addition satisfy local conservation laws. Such correlations occur 
even though the collision rules are strictly local and invariant under all sym- 
metries of the lattice. First a phenomenological (Langevin equation) approach 
is discussed. Next we present a theoretical analysis on the basis of an approx- 
imate microscopic (ring kinetic) theory. This theory is used to calculate the 
amplitude of r -= tails in the spatial correlations, and the result is compared with 
computer simulations. 

KEY WORDS: Long-range spatial correlations; violation of detailed balance, 
fluctuation-dissipation theorem, lattice gas automata. 

1. I N T R O D U C T I O N  

As highl ighted  in a recent  review by  D o r f m a n  et  aL ~ a m a j o r  theme in 
n o n e q u i l i b r i u m  stat ist ical  mechan ics  d u r i n g  the past  few decades has been  
the ques t ion  of  u n d e r  wha t  cond i t i ons  the cor re la t ions  in fluids cons is t ing  
of molecules  wi th  shor t - range  in te rac t ions  on ly  can  become  long-ranged.  
The  existence of  generic  long- range  spat ia l  cor re la t ions  in n o n e q u i l i b r i u m  
s t a t iona ry  states of  condensed  m a t t e r  is by  n o w  well unders tood .  It  is 
in t ima te ly  connec ted  wi th  the existence of  long- t ime  tails in G r e e n - K u b o -  
type t ime cor re la t ion  funct ions.  I t  seems tha t  necessary cond i t i ons  for the 
existence of  sqch a lgebraic  cor re la t ions  are (i) the existence of  local con-  
se rva t ion  laws a n d  co r r e s p o n d i n g  slow (diffusive or h y d r o d y n a m i c )  modes  
(ii) lack of  detai led ba lance ,  an d  (iii) some degree of  an i so t ropy ,  due ei ther  
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to an underlying lattice or to an external driving field or a gradient imposed 
by external reservoirs. 

Classical fluids in thermal equilibrium are described by the Gibbs 
distribution. The spatial correlations are short ranged and extend only over 
the range of the forces, unless parameters are chosen such that the system 
is near a critical point. However, if a temperature gradient or a shear rate 
is applied across the system, the system approaches a spatially nonuniform 
steady state that breaks the spatial isotropy of the continuous fluid. Under 
these conditions generic long-range density correlations exist in the fluid. 
Theoretical explanations of this phenomenon have been given in the 
literature, based on fluctuating hydrodynamic equations, mode coupling 
approximations, or ring kinetic theory, tl~ 

In driven diffusive systems the imposed bias fields or reservoirs may 
give rise to phase separation and pattern formation. On the other hand, the 
biased dynamics may also allow for a spatially uniform nonequilibrium 
steady state with long-range spatial correlations. Theoretical explanations 
for the latter case are based on the fluctuating diffusion equation or on 
microscopic theories. (2 51 

In this paper we consider a lattice gas automaton (LGA) as a many- 
body system with stochastic interactions of zero range that are described by 
asymmetric transition probabilities As,~A~s different for forward and 
backward transitions. These transmission probabilities are defined more 
precisely in Section 4.1 when the microscopic definitions of the LGA are 
introduced. In the context of LGAs the symmetry As~=A,s is called 
detailed balance, and the lack of this symmetry is called violation of detailed 
balance. The LGAs under consideration in this paper are closed (say, 
periodic boundary conditions) and fully isolated from the influence of 
external reservoirs, imposed gradients, or bias fields, and will approach for 
long times a stable and spatially uniform stationary state that we call an 
equilibrium state. We will show in Section 2 that closed systems of LGAs 
lacking detailed balance may also be viewed as effective or mathematical 
models for open systems driven by artificial reservoirs. 

It is the purpose of this paper to show that the equilibrium state of 
such LGAs exhibits long-range correlations. The existence of such algebraic 
spatial correlations in closed LGAs has never been observed or discussed 
in the literature. If an LGA obeys the detailed balance symmetry As,, = A ~.,., 
then the coefficients of the algebraic tails vanish, and so do all spatial 
correlations. 

Here we demonstrate the existence of these long-range correlations 
both from the fluctuating Langevin equation as well as from kinetic equa- 
tions. Furthermore, we obtain microscopic expressions for the coefficients 
appearing in the algebraic tails of the spatial correlations, which can be 
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evaluated for large classes of LGAs and for arbitrary state variables (den- 
sity, etc.), and we show some preliminary evidence that the predictions on 
long-range correlations from ring kinetic theory are in agreement with 
computer simulations. 

Our conclusion will be that this equilibrium state is different from 
the Gibbs state of thermal equilibrium, in which the range of spatial 
correlations is on the order of the range of the interactions. We occa- 
sionally refer to these states as non-Gibbsian equilibrium states. 

In the context of LGAs as models for fluids, Dubrulle et al. ~6~ were the 
first to introduce LGAs with local collision rules that violate the con- 
straints of detailed or semi-detailed balanceJ 7~ This was done to construct 
models with a large Reynolds number. The emphasis nowadays is more on 
non-detailed balance models as tools to study the kinetics of phase separa- 
tion and pattern formation3 8~ In the present paper we consider, however, 
non-detailed balance LGAs that approach a stable and spatially uniform 
non-Gibbsian equilibrium state. Computer simulations ~6' 9. ~0~ have revealed 
the existence of local velocity correlations and nonlocal spatial correlations 
in such equilibrium states. 

In general, long-range correlations between fluctuations in local den- 
sities, 6 x ~ = x i - ( x i ) ,  are measured through the correlation functions 
~0.(r, r', t) = (0x~(r, t) &'~flr', t ) ) .  An interesting property of LGAs lacking 
detailed balance is that they exhibit the same type of long-range correlations 
as those discussed in refs. 1-5. These spatial correlations may be studied at 
different levels of microscopic detail. The coarsest description uses a macro- 
scopic phenomenological equation (diffusion, Navier-Stokes, reaction- 
diffusion) with a Langevin noise term added to it. Here the transport 
coefficients and noise strengths are phenomenological input in the theory. 
The symmetry properties of tensors determine the type of long-range 
correlations that may occur. The Langevin description is conceptually the 
simplest, but nevertheless it captures all essential features. In Section 3 this 
approach is summarized and extended to describe momentum correlations 
in fluid-type models. 

A theoretical understanding of the spatial correlations in the uniform 
equilibrium state of LGAs without detailed balance was totally lacking 
until recently, when the present authors developed ring kinetic theory 
for non-detailed balance (NDB) LGAs in ref. 11 and gave a quantitative 
explanation of the spatial correlations at short distances, as measured in 
computer simulations of NDB LGAs. In the theory of dense gases and 
fluids, ring kinetic theory dates from the late 1960s and early 1970s. ~2~ In 
the context of LGAs satisfying detailed balance, ring kinetic theory had 
already been applied to explain the observed long-time tails in the velocity 
autocorrelation function of fluid-type LGA I ~3~ and to calculate the correc- 
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tions to mean field transport coefficients caused by sequences of correlated 
binary collisions, the so-called ring collisions, c~3" ~4~ 

In Section 4 the ring kinetic theory for NDB LGAs of ref. 11 is analyzed 
to obtain the behavior of the spatial correlations at large distances. This 
analysis clearly shows the existence of generic long-range correlations in 
the non-Gibbsian equilibrium state of NDB LGAs. In this fully micro- 
scopic statistical mechanical description the combined effects of noise 
strengths and transport coefficients are calculated from the theory. This is 
a great advantage over the Langevin equation approach. Section 5 deals 
with an example of a non-detailed balance LGA: a fluid-type model with 
local mass and momentum conservation whose dynamics obeys all the 
symmetries of the triangular lattice. We end with a discussion. 

2. NDB LGA AS DRIVEN DIFFUSIVE SYSTEM 

To understand the relation between a non-detailed balance LGA and a 
driven diffusive system, it is instructive to view the former models as effective 
models in which the different collision rules (transition probabilities) can be 
interpreted as coupled chemical reactions sustained by artificial reservoirs 
that impose prescribed forward and backward rate constants. To make this 
more explicit, we consider the following coupled chemical reactions: 

k+ 
X + A T - - ~ B ,  2 X + c , k ' + ' X + D  (2.1) 

k -  Id_ 

Let x, a, b, etc., denote the concentrations of X, A, B, etc., and let k +, k _ ,  
k'+, and k'_ be the rate constants. Then the rate equation for the concen- 
tration x is 

2 = (k_  b - k + xa) + (k'_ dx - k'+ X2C) (2.2) 

In a closed system similar equations can be written for ci,/;, d, d. 
Suppose we contrain the system by artificial reservoirs that keep the 

concentration of a, b, c, d constant (open system), and we determine the 
stationary solution of (2.2) by setting 2 = 0 .  The stationary solution, 
denoted by Xo, describes a detailed balance equilibrium state if the 
contributions ( . . . )  of the individual reactions on the right-hand side of 
(2.2) vanish separately for x = x o, i.e., if Xo satisfies the more restrictive 
detailed balance conditions: 

k + x o a = k _  b, , 2 , k + x o c = k  xod (2.3) 

These conditions are sufficient for the existence of a stationary state, but by 
no means necessary. In general the stationary state x o of this driven ther- 
modynamic system will not satisfy the detailed balance conditions (2.3) 
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(except in the very special case where k _ b / k + - - - k ' _ d / k ' + c ) .  Hence, the 
stationary state is referred to as a non-detailed balance state. 

Alternatively, we may describe the reactions in (2.1) in the open 
system as 

X~ ~2~, 2X,  ~ ' '  X (2.4) # fl' 

where 0t = k + a, fl = k_  b, 0~' = k'+ c, and fl' = k "  d, and consider these 
equations as defining an effective model of a closed N-particle system. The 
equilibrium state of this closed system is a non-detailed balance state. 

The kinetic equation (2.2) only describes the time evolution of the 
global concentration. To describe the local concentration x(r, t), one may 
introduce the spatial dependence by adding a diffusion term D x V 2 x  to the 
right-hand side of (2.2), where D x is the diffusion coefficient of the 
substance X. 

To make the parallel with the Boltzmann equation description of 
LGAs, one needs to generalize the one-component case (2.2) to a multi- 
component case with local concentrations {xi(r, t); i = 1, 2 ..... b}. Then the 
chemical reactions (2.4) correspond to collisions between particles in 
different one-particle states i with velocity ci and the reaction-diffusion 
equation corresponds to the nonlinear lattice Boltzmann equation for 
LGAs. The stationary solution xi(r, oo) = x ~ with i = 1, 2 ..... b is obtained by 
setting the total collision term equal to zero and solving for x ~ If x ~ does 
not make the individual collision terms in (2.2) vanish, i.e., does not satisfy 
the analog of (2.3)--which is the relation A,.~ = A~., (see Section 4.1 )-- then 
x ~ describes a non-detailed balance state, and we call the model a non- 
detailed balance LGA. 

Of course, the parallel is not complete, as the spatial dependence 
evolves in the reaction~tiffusion equations through diffusive propagation, 
and in the corresponding lattice Boltzmann equation through ballistic 
propagation. 

To continue the parallel between the reaction~tiffusion equation and 
the lattice Boltzmann equation at the fluctuation level, one may add a 
Langevin noise term to the lattice Boltzmann equation (as has been done 
in refs. 15 and 16). The transport coefficients are then determined by the 
theory, but the noise strength is phenomenological input. This parallel, 
however, will not be pursued any further. 

The above arguments illustrate how the behavior of a closed LGA 
without the detailed balance contraints, isolated from external fields and 
reservoirs, can be viewed as an open, driven thermodynamic system. In this 
sense NDB LGAs can be interpreted as generalizations of driven diffusive 
systems. 
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3. THE L A N G E V I N  E Q U A T I O N  A P P R O A C H  

3.1. Dr iven D i f fus ion  

In this subsection we recapitulate the basic theory of nonequilibrium 
Langevin models for driven diffusion, as described in refs. 2-4. In such 
systems one is dealing with a conserved scalar field (mass density, concen- 
tration). Different types of generic long-range correlations may occur in 
such systems, depending on the degree of spatial anisotropy. 

We start with an example in which the symmetry between the coor- 
dinate axes is broken; without loss of generality we use a two-dimensional 
representation with x-y  anisotropy. Consider a locally conserved density 
h(r, t )=( /~(r ,  t )) .  On average its long-wavelength components satisfy a 
diffusion equation with an anisotropic diffusion tensor, D ~ p = D ~ p .  To 
account for long-wavelength fluctuations, one adds to this equation a 
Langevin noise term, which is essentially the divergence of a fluctuating 
current. After Fourier transformation the Langevin equation reads 

0,/~(q, t) = - ( D x q  ~ + Oyqy)/~(q, t) + 0(q, t) (3.1) 

The random noise is assumed to be Gaussian with zero mean, 
(0(q, t ) ) = 0 ,  and its variance is given by 

(O(q, t) 0( - q ,  t ' ) )  = 2(8,.q~. + B,,q~,) ,~(t- c) (3.2) 

Again, we have allowed for spatial anisotropy by having two constants B,. 
and B.,,. Both the diffusion coefficients D~ and the noise strengths B~, are 
phenomenological coefficients: they are not provided by the theory. The 
stationary susceptibility can be calculated from (3.1) and (3.2) as 

B.,.q2,. + Byqy 
x(q) = lim ([/~(q, t)[ 2) - Dxq] - + Dvq~ ' (3.3) 

I ~ o O  . . 

as q ~ 0. From this expression it can be seen that x(q) depends on the 
direction as q=~/Iql  of the wave vector, unless the special relation 
B,./D.,. = Br/Dy holds. 

Once the susceptibility x(q) is known, the equal-time density-density 
correlation function in the stationary state if(r) can be calculated from 

fff(r)= vo fiBz(ff--q)ae~qrx(q) (3.4) 

where the q-integration extends over the first Brillouin zone and Vo is the 
volume of a unit cell in the direct lattice (Vo = 1 on the square lattice and 
Vo = �89 on the triangular lattice). 
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Equations (3.1) and (3.2) can be generalized by including higher order 
gradients. We then have 

together with 

0,/~(q, t) = --D(q) q2fz(q, t) + q(q, t) 

(0(q, t) 0 ( - q ,  t ' ) )  =2B(q) qZ6( t - t ' )  

(3.5) 

where D(q) and B(q) are now general functions of q that can be expanded 
in powers of q2. and q~. In what follows we will recall how the symmetry 
properties of the various terms in such an expansion determine the type 
of long-range correlations that occur ~3) and under what conditions such 
correlations are absent. 

If the system satisfies detailed balance, and consequently the equi- 
librium distribution corresponds to thermodynamic equilibrium, then the 
equilibrium value of the susceptibility x(q) ~- Xo as q ---, 0 is known from 
thermodynamics. Transport coefficients and noise strengths are in this case 
related by the fluctuation-dissipation theorem, 

B(q)=xoD(q)  (3.7) 

and the correlation function is short ranged, i.e., i f ( r )=go~(r )  unless the 
system is at a critical point where g(q) ~ oo. However, without the detailed 
balance constraint the equilibrium state is not a Gibbs state. In general the 
susceptibility g(q) is then unknown, and there is no fluctuation-dissipation 
theorem imposing a relationship between B(q) and D(q). 

Consider expression (3.4): the long-wavelength limit Xo(~) of the 
susceptibility is anisotropie since generically it depends on the direction 
along which the limit is taken. Hence, the function x(q) is not continuous 
at q = 0. A rescaling of the integration variables in (3.4), viz. q = k/r, shows 
that if(r)-~ Eo([)/r a at large distances. As diffusive modes are correlated 
over time intervals t ~ r 2, the spatial correlations ~ 1/r a have an intimate 
connection with the long-time tails ~ l / t  d/2 in the velocity and other 
current-current correlation functionsJ ~" ~7) 

The above scenario--1/r a correlations occurring because the suscep- 
tibility x(q) is not continuous at q = 0--is realized in purely diffusive LGAs 
where the collision rules do not satisfy detailed balance and in addition 
break the rotational lattice symmetry by having different transition 
probabilities in x and y direction. (-'-5) 

Even if z(q) is continuous at q = 0, weaker singularities at q = 0 may 
still give rise to algebraic correlations. To make this more specific, we 
consider a system where the susceptibility has the full symmetry of the 

(3.6) 
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underlying lattice (square, triangular, cubic, etc.). The symmetry properties 
of the 0(q 2) term in the expansion of z(q) involve fourth-rank tensors. On 
the square lattice, such tensors contain anisotropic parts. Consequently the 
second q-derivative of x(q) is not continuous, and again a simple scaling of 
(3.4) shows that i f ( r ) ~  Ez(t)/r  a+2 (see, for instance, ref. 3). 

On the triangular lattice fourth-rank tensors are isotropic and l/r d+2 
correlations are absent. We then have to consider the next subleading term 
in the expansion of x(q) which is O(q4), and involves sixth-rank tensors. 
Such tensors are not isotropic on any two- or three-dimensional lattice, 
and it follows that the spatial correlations on a triangular lattice decay as 
~(r)-----E4(~/r d + 4  with d =  2. In three dimensions there does not exist any 
regular lattice on which fourth-rank tensors are isotropic, ~18~ and spatial 
correlations in non-detailed balance LGAs with dynamics observing the 
full lattice symmetries and with only scalar conserved densities are always 
of the form ~(r)  ~ 1/r a+'- with d =  3. 

3.2. M o m e n t u m  Corre lat ions in F lu id-Type Models  

In fluid-type LGAs similar results apply to equal-time correlation 
functions between the momentum density g(r) at two different points, 
i.e., the equilibrium correlation function ff~p(r) = (g~(r) gp(0)) behaves 
as E(t) /r  a for large r. The presence of conserved densities of a vectorial 
character offers a much richer structure of density-density correlation func- 
tions than in the case of the driven diffusive systems. In Sections 4 and 5 
we obtain the same result on the basis of a fully microcopic theory. 

This type of correlation can be understood on the basis of a phenom- 
enological Langevin theory as well, with noise terms added to the hydro- 
dynamic equation (Navier-Stokes equation) describing the time evolution 
of the flow field on large spatial scales. For our purpose it is sufficient to 
only consider the symmetry properties of the problem. The quantity fr 
is a second-rank tensor field with the full symmetry of the underlying 
lattice. The same holds for the corresponding susceptibility Z~p(q), which 
can be decomposed into a longitudinal and a transverse component as 

(3.8) 

where X~(q) and X•177 are scalar fields. Let us suppose that the limit 
q ~ 0 of these scalar fields exists, i.e., 

lim xa(q) =Xt~, lim X•177 =Z•177 (3.9) 
q~O q~O 
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If the two limits are unequal, Z ,g :Z•177  then the tensor field (3.8) is not 
continuous at q = 0. From the microscopic expressions derived in Sections 
4 and 5, it follows that the longitudinal and transverse susceptibilities are 
indeed equal/unequal if the detailed balance symmetry is satisfied/violated. 
Fourier inversion of the asymptotic form (3.8) and subsequent rescaling 
( q = k / r )  shows again that generic long-range momentum correlations 
~/~(r) ~ E(f /r  a) exist in the uniform equilibrium state on any d-dimensional 
lattice unless Xu =Y•177 In particular, in any two-dimensional LGA fluid on 
the triangular lattice that violates the detailed balance symmetry, this yields 

,/5 
~,.,.(r) = - ~.y(r) = --~-n (Z,, - Z •177 \ r4 j (3.10) 

The above result shows the existence of long-range 1/r'- behavior in the 
spatial correlation between momentum densities at two different points in 
terms of two susceptibilities X, and X•177 In the Langevin approach these 
susceptibilities can be expressed in terms of phenomenological noise 
strengths and transport coefficients similar to B and D in Section 3.1. In the 
next section we present a microscopic theory which allows us to derive 
general formulas for the phenomenological coefficients E,,(f). These for- 
mulas can be calculated for general LGAs of diffusive or fluid type. As an 
application we present in Section 5 a triangular LGA fluid for which XH 
and Z•177 will be calculated explicitly. 

4. MICROSCOPIC THEORY 

4.1. Detailed Balance 

We consider an LGA defined on a regular d-dimensional lattice So 
with periodic boundary conditions, containing V= L d nodes. On each node 
r e 2 '  there exists a set of allowed velocity channels c; (i = 1, 2 ..... b), where 
i labels nearest neighbor lattice vectors, and possibly rest particles. The 
system evolves at discrete time steps t = 0, 1 ..... The microscopic configura- 
tion of the system at time t is given in terms of occupation numbers 
si(r, t ) =  { 0, 1 } (Fermi exclusion rule) denoting the absence or presence of 
a particle in velocity channel (r, c;). The state of node r is denoted by 
s(r, t ) =  {s;(r, t); i =  1, 2 ..... b}. The dynamics of the LGA consists of a colli- 
sion step followed by a propagation step. The collision step is performed at 
all nodes simultaneously, and is defined by the strictly local transition 
probabilities As~ from a precollision state s at a single node to a post- 
collision state a at the same node. The transition matrix is normalized, 
Z~ A.,, = 1, and invariant under the full group of symmetry operations of 
the underlying lattice. 
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Certain conservation laws must be obeyed by As,. In case only the 
local mass or number of particles is conserved in a collision, the local 
density is a slowly varying quantity, and we are dealing with a purely 
diffusive model. If momentum is also conserved in a collision, the local 
momentum density or flow velocity is slowly varying, and we are dealing 
with an athermal fluid. If in addition energy--which may be purely kinetic 
or internal--is conserved, then the local energy density or temperature is 
a slowly varying quantity as well, and we are dealing with a thermal fluid. 
The ring kinetic theory in this section is presented in a general framework 
so as to cover all such cases. 

After these definitions, we devote the remainder of this subsection to 
a careful description of what is meant by "detailed balance" in the context 
of LGAs, as many different authors are using different generalizations of 
this concept. A lattice gas is said to have the detailed balance symmetry if 
the single node transition matrix has the extra symmetry 

A, . .=A~.  (Vs, ~) (4.1) 

in addition to lattice symmetries and conservation laws. To make the 
analogy with the standard concept of 'detailed balance' as used in kinetic 
equations as close as possible, one may express the nonlinear binary colli- 
sion term (19~ of the Boltzmann equation for a gas with stochastic inter- 
actions in terms of a transition rate A ( c l e 2  J c ' c *  ) from an in-state (e~c2) 
to an out-state (c ' c*) .  This A is the analog of As~. Here the detailed 
balance symmetry is 

A(c, c21 c ' c * ) = A ( - c * - c * l  - c l - % )  (4.2) 

We apply this to a binary collision in an LGA, and observe that the 
dynamics of an LGA is invariant under all symmetries of the lattice, 
including inversion. Therefore the minus sign in (4.2) can be removed, 
resulting in 

A(c~cz I c~c~) :A(c~c~ I c~c=) (4.3) 

which is the direct analog of (4.1). Similar arguments apply to n-tuple 
collisions in LGAs. 

Frisch et al. (7) have shown the following: if a LGA satisfies the detailed 
balance symmetry (4.1), then the Liouville equation admits a completely 
factorized equilibrium distribution ~ ( s ) = I - I ,  Fo(s(r)) without spatial 
correlations, where ~(s)  is the F-space distribution. A microstate s is 
defined as the set of occupation numbers s = {s(r); r ~ ~ }  = {si(r); r ~ ~a, 
i = 1, 2 ..... b}. Maximization of the entropy furthermore suggests that Fo(s) 
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with s =  {s~; i =  1, 2 ..... b} should also be factorized over the separate 
velocity channels, i.e., 

Fo(s) = I-I (fo)s, (1 _ f o ) , - , ,  (4.4) 
i 

Then one can show that the average occupation number f.o of a single- 
particle state { r, e;} in equilibrium necessarily takes the form of the Fermi 
distribution. In case the number of particles, momentum, and energy are 
conserved, the Fermi distribution reads 

f o  = ( s i ( r ) )  eq = [ 1 + exp( -c t  - 7" ci + flei)] - i  (4.5) 

It contains three parameters 0c, ~t, and - f l ,  which are conjugate to the colli- 
sional invariants a~ = { 1, e~, e~}, where the energy e; of a particle in channel 
e; can be purely kinetic, e~= �89 but it may include internal energy. If 
energy or momentum is not conserved, then the conjugate parameter fl or 
? should be set equal to zero. 

Moreover, Fo(s) above can be written in the equivalent form 

exp[ ~p(s) + 7" g(s) -- fie(s) ] 
Fo(s ) = (4.6) 

Zs, exp [~p(s') + 7 '  g ( s ' ) -  pe(s')] 

where the locally conserved quantities 

g(s)J  =~ /  c i 

e(s ) /  el 
si (4.7) 

are respectively the number of particles, momentum, and energy corre- 
sponding to state s. This can be verified by carrying out the s' summation 
in the denominator and using the explicit form (4.5) of the Fermi distribu- 
tion fo .  For later reference we quote a further consequence of the detailed 
balance symmetry, namely 

Fo(s) A.,, = A,~,Fo(a) (Vs, a) (4.8) 

This is implied by (4.1) and (4.6) together with the conservation laws. 
From the previous results we also infer that the F-space distribution 

over microstates s = {si(r); r e  L#, i =  1, 2 ..... b} is the Gibbs distribution, 

~ ( s )  = 1-[ Fo(s(r)) = exp[ ctN(s) + 7" P(s) - fill(s) ] (4.9) 
r ~ ,r (~ ,  Y, P) 

822/81/I-2-34 
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where the global invariants N(s), P(s), and H(s) are, respectively, the total 
number of particles, the total momentum, and the total energy. The parti- 
tion function ~gr is defined such that Zs  ~ ( s ) =  1. To verify that the Gibbs 
distribution (4.9) is indeed a stationary solution of the Liouville equa- 
tion, ~7) one needs the property that the Gibbs distribution N(s) is invariant 
under the separate action of the collision step and the propagation step. 

There is no proof  that the relevant equilibrium distribution is always 
of the form (4.9) when N, P, and H form the complete set of global 
invariants, but computer simulations provide strong numerical evidence 
that the single-particle distribution has the Fermi form and that spatial and 
velocity correlations are absent in the equilibrium state. 

The present interpretation of detailed balance is in agreement with 
that of van Kampen~'-~ a physical system approaches for long times a 
unique thermodynamic equilibrium state. If an LGA is to model a physical 
system, the transition matrix should be consistent with this equilibrium dis- 
tribution. A sufficient condition 2 to guarantee this is the detailed balance 
symmetry, which has the form (4.1) in the present paper. 

If an LGA violates the detailed balance symmetry we call it an NDB 
model. As we shall see in the next sections, the equilibrium state of an 
NDB model is not given by the factorized Gibbs form (4.9), but exhibits 
long-range algebraic correlations. According to the discussion in Section 2, 
such LGAs may be considered as effective or mathematical models describing 
driven physical systems. 

In the LGAs considered in this paper all global invariants are strictly 
sums over one-particle states {r, c;}. Consequently there are no correla- 
tions between occupation numbers at the same or at different nodes in the 
Gibbs state (4.9) of LGAs that satisfy the detailed balance symmetry (4.1), 
and all multiparticle distributions factorize in equilibrium, or, equivalently, 
all correlation functions vanish. The pair correlation function, for instance, 
has the diagonal form 

~y(r - -  r ')  = (3s,(r)  6sj ( r ' ) )e  q = 3,jg(r,r ' )f~ _ f o )  (4.10) 

where the fluctuations are defined as 6 s i ( r ) = s ; ( r ) - f  ~ and 3(r, r ') is a 
d-dimensional Kronecker delta. 

The above discussion does not exclude the possibility that one can 
construct m a t h e m a t i c a l  models that violate the detailed balance symmetry, 

2 A weaker condition that still guarantees the existence of a Gibbsian equilibrium state is the 
semi-detailed balance or Stueckelberg condition, 5Z, A.~ o = 1. However in all specific models 
used in the literature for analytic calculations or computer simulations, the semi-detailed 
balance condition is equivalent to (4.1) except in the face-centered hypercubic (FCHC) 
models discussed by H6non. ~9~ 
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but nevertheless possess a completely factorized (be it non-Gibbsian) 
equilibrium state. 12~ This can be done as follows: one chooses a set {f0}, 
different from the Fermi distribution, and constructs an LGA with a transi- 
tion matrix A.,.~ that satisfies the symmetry relation Fo(s)A.~.~=Fo(a)A~.~ 
for all s and a, with Fo(s) given by the product form (4.4). This type of 
symmetry relation is a mathematical extension of (4.5) and is referred to as 
"detailed balance with respect to a given equilibrium distribution j~.f~ ,, We 
will not consider this extension in the present paper. 

4.2. Ring Kinet ic  Theory  

In a very recent paper Bussemaker et al. ~1~ have derived a coupled set 
of kinetic equations: the generalized Boltzmann equation for the single- 
particle distribution function and the ring kinetic equation for the pair 
correlation function. The equations apply to LGAs with zero range inter- 
actions with or without the detailed balance symmetry. The methods used 
to obtain these kinetic equations are similar to the ones used to study 
classical fluids. 

The LGAs studied in the remainder of this paper violate the detailed 
balance symmetry, and are assumed to approach for long times a spatially 
uniform and stable equilibrium state. The single particle distribution 
function and the pair correlation function in that equilibrium state are 

f ~  
(4.11) 

~ j ( r -  r') = (~si(r) ~s:(r') ) eq 

with 6 s i ( r ) = s , ( r ) - f  ~ and i , j = { 1 ,  2 ..... b}. They can be obtained from 
the stationary solution of the kinetic equations of ref. 11, which constitute 
a coupled set of nonlinear equations that can be solved numerically for 
general LGAs. This has been shown in ref. 11 by two applications to LGAs 
without the detailed balance symmetry: (i) the pair correlation function 
fg(r) in a one-dimensional model of interacting random walkers, and (ii) 
the correlation ~j(r  = 0) between particles in velocity channels ci and cj on 
the same node of a triangular LGA fluid. In both cases the predictions of 
ring kinetic theory were in good agreement with the results of computer 
simulations. 

The purpose of this section is to show analytically that the ring kinetic 
theory of ref. 11 yields for large distances the algebraic tails ~ 1/r'- of 
the correlation functions that were predicted by the phenomenological 
Langevin equation of Section 3 and to calculate the coefficients of these 
tails explicitly from the microscopic theory. 



528 Ernst and Bussemaker 

The numerical analysis of Bussemaker et al. has also shown that the 
fully self-consistent solution of the nonlinear coupled kinetic equations is 
only slightly different [less than 1% for the average occupation fo ,  and 
less than 10% for the pair correlation function ~ j ( r - r ' ) ]  from a simple 
perturbative solution called the simple ring approximation. In this paper 
we therefore restrict ourselves to this approximation, where f o  is deter- 
mined as the stationary solution of the nonlinear Boltzmann equation. As 
shown in ref. 11, the Fourier transform of the pair correlation function 
%(r) is then given as 

or equivalently, 

1 
~ o ( q ) - z u ( q )  = 1 -s(q)o9 s(q) B 1 (4.12) 

O" 

~7(q) = Axe(q)= [ 1 -  ~l(q)o9 s ( q ) E ] u  (4.13) 

where we also introduced the excess correlation function 

% ( r )  - ~, j (r)  '1 -- ~u(r) 
~ d t  o-tr~ =6(r, O) 5o.g ~ 

gO = f ~(1 _ fo )  

(4.14) 

The two source terms in (4.12) and (4.13) are given by 

2o (4.15) Eo.=- B i j -  [( 1 --co) f~d(0) ] 0- ~ g2 0. 

The approximate equality in (4.15) refers to the simple ring approximation 
and the D-coefficients are defined as 

D~ ~ - ~ (6cr,6aj- 6siSsj) As~Fo(s) (4.16) 
a't~ 

Here 6 a i = a i - f  ~ and Fo(s) is given by (4.4) with f 0  replaced by the 
solution of the nonlinear Boltzmann equation, which differs from the Fermi 
distribution. If, however, relation (4.8) is valid, which is a direct conse- 
quence of the detailed balance symmetry (4.1) and the conservation laws, 

2O then it is automatically guaranteed that the set of coefficients O 0. is 
vanishing. Consequently c~,j(q) in (4.13) vanishes, and ~).(q) in (4.12) 

d - -  reduces to the diagonal form N 0 ( r - 0  ) in (4.14). 
The terms (1-o9)  and ( l - s (q )og)  in the above equations are 

matrices whose rows and columns are labeled by a pair of labels (g) 
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with i , j ~ { 1 , 2  ..... b}; similarly, f~(q), x(q), ~'(q), B, E, and /2 2~ can be 
considered as vectors and (s(q)B)o.=so.(q)Bo.=exp[iq.(cj-cg)] B U. In 
fact, s(q)o) is a direct product of two matrices, 

s~(q) cou.kt= {e-;q'~'(l + 12);k} {e+;qv(1 + l2)j,} (4.17) 

where /2 U is the linearized Boltzmann collision operator, [ exp ( iq . e ) ]u=  
6oexp(i q . c~) is a diagonal matrix, and 

s = ~ ( a , -  si) A,,~Fo(s) 6sJg ~ (4.18) 
.Y(7 

In case A,, satisfies the detailed balance symmetry (4.1), then one can show 
directly that the matrix t2o.g~ is indeed symmetric. Without this symmetry 
it is in general nonsymmetric. 

To calculate AXu(q) in (4.13) for small q we perform a spectral decom- 
position of the product matrix in (4.17) and consider the eigenvalue 
problem (in matrix notation), 

e-~q'~(1 +/2)  ~h,,(q) = A,,(q) ~,,(q) (4.19) 

where ~h~,(q) is a right eigenvector with label /z and eigenvalue A~,(q). 
Let ~b~,(q) be the corresponding left eigenvector. These eigenvectors form a 
complete biorthonormal set, satisfying 

(@,,(q) I ~bv(q)) --~ @,,;(q)~/,,,(q)=6,,v (4.20) 
i 

The eigenvalues A~,(q) and eigenvectors ~h~,(q), ~t,(q) at small q can be 
calculated by standard perturbation theory for degenerate eigenvalues. This 
was already done for closely related LGAs with a symmetric s176 (22' 23~ 
and with a nonsymmetric one. (241 

Before writing the spectral decomposition of (4.12) or (4.13). we 
restrict our discussion to spatial correlation functions between conserved 
densities, 

f~,b(r) = ~ a,.bj~j(r) - (ab I ~ ( r ) )  (4.21) 
O" 

where a;, b i=  1 in purely diffusive LGAs, and ai, b~ E { 1, s in athermal 
LGA fluids, and a,, b,~ {1, c,, �89 in thermal LGA fluids. On account of 
(4.12)-(4.14) ttlis implies for the corresponding susceptibilities 

z o o ( q )  = zo"b + ~x , ,~ (q)  (4.22) 
d 0 Zoo = ~ a,b J,(  l _f,o) 

i 
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The spectral decomposition of the relevant excess susceptibilities then 
becomes 

AZ,,b(q ) = ~ aibj~o(q) 

=~,, (ab [ ~k~,(q)~,(-q)) (~b/,(q) ~b,(-q) I s (q)E)  (4.23) 
,,,' 1 - -  A , , (q )  A v ( - - q )  

As we are interested in the behavior of the excess susceptibility for small q, 
the pv summation in (4.23) can be restricted to terms with a vanishing 
denominator where eigenvalues A~,(q) ---, 1 as q --, 0, i.e., to products of slow 
(hydrodynamic or diffusive) modes. 

In purely diffusive models there is only a diffusive mode (/2 = D) with 
Ao(q) = 1 - Dq 2 + . . . ,  with D the diffusion coefficient. In an athermal LGA 
fluid there are sound modes (p = a = + ) with Aa(q) = 1 - iav~.q - Fq 2 + . . . ,  
and shear modes (p = 1 )  with A•  1--vq2+ . . .  , where the speed of 
sound vs, the sound damping coefficient F, and the shear viscosity v can all 
be explicitly calculated from (4.19) using perturbation theory. 

Expression (4.23) is the main new result of this paper. It provides a 
microscopic expression for the phenomenological coefficients entering in the 
Langevin description of long-range correlations in non-detailed balance 
LGAs. The advantages of the microscopic theory are evident: (i) one can 
calculate the phenomenological coefficients of Section 3 for a microscopic 
model, and (ii) one can show from the general expression (4.23) that all 
Axo.(q) vanish if the detailed balance symmetry is obeyed, as is demon- 
strated below (4.16). 

5. A P P L I C A T I O N :  A F L U I D - T Y P E  LGA 

As an illustration we apply our microscopic theory to an LGA fluid 
without detailed balance. In this model, which is defined on the triangular 
lattice, each node may contain a rest particle and six moving particles. The 
transition probabilities Asa between states with a rest particle and those 
without are asymmetric. Even with the requirement that the model satisfy 
all symmetries of the triangular lattice, it still contains 20 independent 
transition probabilities)~0~ In ref. 11 ring kinetic theory was applied to such 
a model, and it was found that short-range correlations are very well 
predicted by this theory. 

Consider the simple choice of parameters shown in Fig. 1, where only 
two different types of collisions are shown. Let f0 and f denote the average 
occupation numbers for rest particles and moving particles, respectively. 
They are related by fo + 6 f =  p, with p the average occupation of a node. 
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Fig. 1. Typical collision rules for a triangular LGA fluid lacking the detailed balance 
symmetry. 

If the detailed balance symmetry (4.1) holds, which in this case would 
imply that 0c=fl and ~' =fl '  in Fig. 1, then the equilibrium state is 
completely factorized, 3 and f0 = f =  p/7. 

If the momentum density in an LGA is conserved, it qualifies as a model 
for fluid flow, in which the local flow velocity is a slowly varying hydro- 
dynamic variable. If in addition the microscopic transition probabilities As~ 
violate the detailed balance symmetry (4.1), there exist long-range 1/r 2 
correlations (3.10) in the equilibrium state, as shown in Section 2.2. In the 
Langevin theory of Section 3 the limiting values for q--* 0 of the longi- 
tudinal and transverse susceptibilities Zu and Z•177 are expressed in terms of 
phenomenological noise strengths and transport coefficients. The ring 
kinetic theory of Section 4 provides an explicit expression (4.23) for the 
dominant small-q behavior of these susceptibilities. Using perturbation 
theory, one can calculate the amplitude of the algebraic spatial tail analyti- 
cally in terms of the transition matrix A~.,. Thus we have a completely 
microscopic theory for the long-range correlations occurring in such LGAs. 
Its detailed evaluation is very elaborate, and will be given in ref. 25. Here 
we will only quote the final result of the calculation. The transverse suscep- 
tibility, the calculation of which only involves a pair of shear modes, is 
given by 

Z•177 ~ ~ (5.1) 
(/)v 

The second term on the right hand side of (5.1) is a non-detailed balance 
correction to the result x•177 = 3 f ( 1 - f )  that holds for detailed balance 
models. The longitudinal susceptibility is given by 

Zn=3f(l_f)+~(v2_l~E,o (~)Ei,_ (5.2, 

It contains the same detailed balance contribution z d = 3 f ( 1 - - f ) ,  but a 

3 In the special case when e/fl=od/fl' there still exists a completely factorized but non- 
Gibbsian state with fo :~f .  However, for generic choices of  parameters that lack detailed 
balance symmetry, this will not occur, and the equilibrium state contains correlations. 
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dif ferent  non-detailed balance correction, which is determined by pairs of 
sound modes. 

The nonvanishing E o. in (5.1) and (5.2) are defined in (4.15). Further- 
more, v., is the speed of sound and v and F are, respectively, the shear 
viscosity and sound damping coefficient. These transport coefficients in our 
microscopic theory are obtained from the (mean-field) eigenvalue problem 
(4.19) 1) 

1 - 2  (5.3/ 
v = ~  

1 
")\<~, 

where m, and ~or are the eigenvalues of - Q u  in (4.18) related to shear and 
bulk viscosity. 

From (5.1) and (5.2) it should be clear that Xu generically differs from 
X•177 unless E~0 and E~3 are both vanishing as a consequence of the 
detailed balance symmetry. This provides an explicit example of long-range 
1/r a correlations in the equilibrium state of NDB fluid-type LGAs on the 
basis of a microscopic theory, together with a quantitative prediction for 
the magnitude of the spatial correlations. 

To test the predictions of the ring approximation for long-range 
correlations we have performed computer simulations. Previous computer 
simulations have already confirmed the predictions of ring kinetic theory 
for short ranged correlations in ref. 11. A particular choice of parameters 
was made for the collisions shown in Fig. 1 together with other collisions 
that obey the lattice symmetries and conservation laws. ~251 The complete 
set of transition rates was chosen such that the model is invariant under 
exchange of particles and holes. Consequently, at the half-filled lattice we 
have f0 = f =  1/2 by symmetry. However, away from half-filling f0 d : f  

Figure 2 shows the pair correlation between the x components of the 
momentum densities at two nodes, separated by r lattice spacings in the x 
direction, ~,.,.(r, 0) = (gx(r, 0) gx(0, 0))eq, in the half filled lattice. The 
solid (zigzag) line connects the points of integer r values and represents the 
result of an exact numerical evaluation of the ring expression (4.12) and of 
subsequent numerical Fourier inversion using the method of ref. 11. The 
straight (dashed) line with slope - 2  represents the asymptotic tail (3.10), 
combined with the analytic results (5.1) and (5.2) for the susceptibilities, 
evaluated at the specific model parameters and densities used in the simula- 
tions. The exact ring theory (zigzag) starts to approach the asymptotic 
theory (dashed) for r > 5 ,  thus demonstrating the consistency of the 
asymptotic and numerical evaluations of the theoretical results. 
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Fig. 2. Momentum-momentum correlation function ~,..,.(r, 0) between nodes separated by a 
vector r = (r, 0) parallel to the x-axis as a function of r in a triangular LGA without detailed 
balance, at half-filling, with system size 256 x 256 and equilibration time 2000. Comparison of 
exact ring theory (zigzag line), asymptotic ring theory (dashed line), and simulations (black 
dots). Simulation errors are indicated by the plus signs at the bottom of the figure. 

The zigzagging is related to the par i ty  of r and is a consequence of  a 
spurious conservat ion law, the staggered total  momentum,  t29~ It  will be dis- 
cussed in ref. 25. The s imulat ions  refer to a 256 x 256 system with per iodic  
bounda ry  condit ions;  an average was made  over several runs in which the 
system was prepared  at r a n d o m  at t = 0 and then equi l ibrated dur ing 2000 
time steps before measurements  of  the pair  corre la t ion function were made  
using a fast Four i e r  t ransform method.  Figure  2 shows the compar i son  
between theory and s imulat ions (b lack  circles). F o r  r larger than about  
10 latt ice spacings the decay becomes algebraic,  f~,.x(r, 0 ) -  ~ -E / r  2, as 
predicted by the analysis of  Section 3.2. There is good  agreement  between 
this analyt ic  result and the s imulat ions  for r in the range between 10 and 20. 
The faster decay of  the s imulat ion da ta  for r larger than 20 is due to the 
fact that  the system, even after 2000 time steps, has not  yet reached 
equi l ibr ium on those scales. This is not  surprising since the long-range 
correla t ions  are caused by slow, diffusive processes act ing on large 
tempora l  and spat ial  scales. An est imate for the spatial  scale r 0 involved is 
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r o = (vt) ~/2 ~- 20, where the mean-field estimate, v -~ 0.2 at half-filling, has 
been used. 

A reason for the small systematic deviations in the range 10 < r < 20 
might be the use of mean-field or Boltzmann values for the transport coef- 
ficients v and F and related eigenvalues o) v and co~ in the evaluation of (5.1) 
and (5.2). In principle one should use renormalized transport coefficients. 
All these effects will be analyzed in more detail in ref. 25. 

6. C O N C L U S I O N  

Lattice gas automata with strictly local collision rules that lack 
detailed balance have a non-Gibbsian equilibrium state containing equal- 
time spatial correlations. In this paper we have shown that the existence of 
local invariants (number and momentum density) necessarily leads to the 
existence of generic long-range correlations in equilibrium, i.e., to algebraic 
decay of the pair correlation function for large distances. 

Our analysis is based on a microscopic theory in which the behavior 
of the wavevector-dependent susceptibility is obtained from a ring kinetic 
equation describing the evolution of the pair correlation function. The 
long-range behavior of the pair correlation function follows from an 
analysis of the small-wavenumber behavior of the susceptibility. The expo- 
nent that defines the algebraic decay for long distances is obtained from the 
symmetry properties of tensors of various rank. The analysis can be per- 
formed at the level of a Langevin equation in which fluctuation strengths 
and transport coefficients are phenomenological parameters. However, the 
microscopic theory presented in Section 4 makes it possible to calculate 
these quantities starting from the definition of the model. We have provided 
here well-defined expressions from which the amplitude of the algebraic tails 
can be calculated. 

The strength of the arguments based on the Langevin equation is that 
for large classes of models at arbitrary densities there exist algebraic tails 
f#(r) "~ E,,(~)/r" with phenomenological coefficients E,,(~) that are in general 
nonvanishing unless there exist an additional symmetry which forces these 
coefficients to vanish. This additional symmetry is the detailed balance 
relation. If detailed balance is satisfied, then the anisotropic part ,Jz(q) of 
the susceptibility is vanishing by construction. 

The strength of our microscopic theory in Section 4 is that we derive 
explicit expressions for the anisotropic parts Az(q )  of the susceptibilities 
which in general are only vanishing if the detailed balance symmetry is 
obeyed. There is an intimate connection between the long-range correlations 
that occur in non-Gibbsian equilibrium states of LGAs lacking detailed 
balance on the one hand and nonequilibrium steady states of driven thermo- 
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dynamic systems on the other hand. We have used techniques that are well- 
known in the context of the kinetic theory of fluids or nonequilibrium 
Langevin equations for driven diffusive systems, tl-5~ 

From the. point of view of using LGAs as tools to study transport 
phenomena in spatially extended systems this paper contains the important 
message that generic scale invariance is a necessary consequence of viola- 
tion of the detailed balance symmetry. Alternatively, we have argued that 
NDB LGAs can be interpreted as effective models for driven systems. 
Explicit microscopic analysis is facilitated in the case of LGAs due to the 
fact that space, time, and velocity are all discrete. For long times NDB 
LGAs approach a non-Gibbsian state containing long-range correlations 
without the necessity of external driving fields or reservoirs. In nonuniform 
steady states with imposed gradients the spatial correlations are much 
longer ranged, (-'6-281 but such cases have not been considered here. 

As an application we discussed in Section 5 the occurrence of momen- 
tum correlations of the type 1/r'- in a two-dimensional fluid-type LGA 
violating detailed balance. These correlation are not caused by a dynamics 
breaking the triangular symmetry of the underlying lattice, but by a 
spontaneous fluctuation of vector type, the local momentum density, that 
breaks the rotational symmetry of the system. To our knowledge this type 
of correlation has not been discussed in the literature. 
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